Let z 1 and z 2 be two distinct complex numbers and let z = (1 − t) z 1 + t z 2 for some real number t with 0 < t < 1. If arg ( ω ) denotes the principal argument of a non-zero complex number ω , then
2 Answers. Sorted by: 9. Interpret arg a r g as principal value Arg A r g, and write z z in the form. z = r(cos θ + i sin θ) (r ≥ 0, −π < θ < π) . z = r ( cos θ + i sin θ) ( r ≥ 0, − π < θ < π) . Your condition then amounts to. r = θ , r = θ , so that necessarily r = θ > 0 r = θ > 0, since θ θ is undefined at z = 0 z = 0
qIJATP. uwhz4vczon.pages.dev/1uwhz4vczon.pages.dev/172uwhz4vczon.pages.dev/281uwhz4vczon.pages.dev/169uwhz4vczon.pages.dev/191uwhz4vczon.pages.dev/22uwhz4vczon.pages.dev/155uwhz4vczon.pages.dev/158uwhz4vczon.pages.dev/33
what is arg z of complex number